ORIGINAL PAPER

Synthesis, UV–Vis spectra, and Hammett correlation of some novel bis(dihydropyrrolo[3,4-*c*]pyrazoles)

Yaşar Dürüst · Muhammet Yıldırım

Received: 30 October 2009/Accepted: 11 June 2010/Published online: 6 July 2010 © Springer-Verlag 2010

Abstract Twenty-nine novel bis(dihydropyrrolo[3,4c]pyrazole) derivatives were obtained by reacting C, N-phenyl-substituted nitrilimines generated in situ from corresponding hydrazonyl chlorides with bismaleimides. The structures were elucidated by physical and spectroscopic methods [m.p., $R_{\rm f}$, infrared (IR), ¹H nuclear magnetic resonance (NMR), ¹³C NMR, correlation spectroscopy (COSY), heteronuclear correlation (HETCOR), nuclear Overhauser effect (NOE), and high-resolution mass spectrometry (HRMS)]. Also, Hammett correlation graphs were obtained between Hammett constants $\sigma_{\rm p}$ and $\lambda_{\rm max}$ values of bis(pyrrolopyrazoles) carrying *p*-substituted phenyl-ring-bearing electron-withdrawing and electrondonating groups and discussed in terms of substituent effects.

Keywords 1,3-Dipolar cycloaddition · Nitrilimine · Bismaleimide · Heterocycles · Spectroscopy

Introduction

Nitrilimines, which were discovered by Huisgen and coworkers in 1959, are important precursors of 1,3-dipolar structure, which can be used to assemble a wide variety of five-membered heterocyclic compounds (pyrazoles, pyrazolines) with 1,3-dipolar cycloaddition reactions to various dipolarophiles [1–22]. Nitrilimines have been

Y. Dürüst (⊠) · M. Yıldırım Department of Chemistry, Abant İzzet Baysal University, Bolu, Turkey e-mail: yasardurust@ibu.edu.tr frequently generated in situ and used in numerous 1,3-dipolar cycloadditions. They are well known to undergo three types of reactions: 1,3-dipolar cycloaddition leading to five-membered ring heterocycles, cyclocondensation reactions leading to five-membered, six-membered or larger heterocycles, and nucleophilic addition leading to acyclic adducts, some of which were reported to show biological activities [23–26].

Experimental observations showed that the orientation observed for alkenes substituted with electron-donor, conjugating, and moderate electron-acceptor substituents is the 5-substituted regioisomer [27, 28]. Sometimes, cycloaddition of nitrilimines to very electron-deficient alkenes gives significant amounts of the 4-substituted 2-pyrazolines [29]. The rationalization of such regiochemical results became evident in terms of the frontier molecular orbital theory of Fukui [30–39].

In addition, bismaleimides have received increasing attention recently, especially in synthesis of polymeric materials [40–44], and molecules derived from the reaction of bismaleimides [45] have often been studied as DNA minor-groove-binding ligands. These types of molecules were also reported to exhibit antitumor activity [46–49].

To the best of our knowledge, based on literature search of SciFinder Scholar, Web of Knowledge, and Beilstein Crossfire databases, there is no reported study related to synthesis of bis(dihydropyrrolopyrazoles) through double cycloaddition of diaryl nitrilimines to bismaleimides. We aimed in this work to assemble bis(dihydropyrrolopyrazoles) by reacting various C,N-substituted nitrilimines bearing both electron-withdrawing and electron-donating groups on phenyl rings attached to the hydrazone azomethine carbon and hydrazone-N², which were produced in situ, with bis(*N*-phenylmaleimides) as dipolarophilic reagents.

Results and discussion

Substituted hydrazones 3a-3k and substituted hydrazonyl chlorides 4a-4k were obtained, starting from the corresponding aldehydes and substituted hydrazines (or hydrochlorides) according to literature procedures [50–54] (Scheme 1), and bismaleimides 8, 9, 10 (Scheme 2) were prepared by procedures reported previously [55–59].

C,N-aryl nitrilimines generated from hydrazonyl chlorides **4** in situ cycloadded to bismaleimides **8**, **9**, **10** in dry

acetonitrile at room temperature to afford bis(dihydropyr-rolo[3,4-*c*]pyrazoles) **11**, **12**, **13** in excellent yields without need for chromatographic separation (Scheme 3).

The reactions were monitored by thin-layer chromatography (TLC) and found to result in single diastereomers. Since the 1,3-dipolar component of the reaction is necessarily unsymmetrical, we may expect the possibility of two diastereomers due to double cycloaddition. However, no indication of another diastereomer was found upon checking the ¹H NMR spectra of the crude reaction mixture or upon monitoring the progress of the reaction by TLC. All of the new compounds were identified by means of spectroscopic and physical data including IR, NMR, and HRMS measurements, and CHN analyses. The cycloadducts **11**, **12**, and **13** showed strong carbonyl absorptions at around 1,720 cm⁻¹ and C=N absorptions at around 1,595– 1,600 cm⁻¹ in the IR spectra.

Assignment of the structures 11, 12, and 13 was performed based on data obtained from ¹H NMR. ¹³C NMR. COSY, HETCOR, and NOE spectra. Many attempts to obtain fine crystals to obtain a better view of the absolute configurations of the cycloadducts by means of X-ray diffraction were performed, but all failed. The relative stereochemistry of the cycloadducts was assigned to be all cis based on the coupling constants of the bridge protons (3a-H/3a'-H and 6a-H/6a'-H) resonating at around 5.20-5.50 ppm as two doublets (J = 11.0 Hz) and COSY, HETCOR, DEPT, and NOE experiments. The chemical shifts of 3a-H/3a'-H bridge protons showed remarkable differences compared with bridge protons 6a-H/6a'-H due to the *p*-substitution of the electron-withdrawing and electron-releasing groups on the phenyl ring attached to the azomethine carbon. In addition, NOE experiments showed strong enhancements by irradiation of the bridge protons

Scheme 3

Fig. 1 Typical NOE difference spectrum of 12a, indicating strong enhancement of 3a-H (3a'-H)

Fig. 2 Typical NOE difference spectrum of 12a, indicating strong enhancement of 6a-H (6a'-H)

3a-H and 3a'-H, and 6a-H and 6a'-H, confirming their *cis* stereochemistry (Figs. 1, 2). This conformation is in accord with the structure reported by Noguchi et al. [60] for a similar structure.

In the case of electron-withdrawing groups in *para* position of the phenyl ring, 3a-H/3a'-H protons were found to resonate at more deshielded chemical shifts (Table 1). Due to the molecular symmetry, only two doublets regarding 3a-H and 3a'-H protons and for 6a-H and 6a'-H protons were observed in compounds **11**, **12**, and **13**. This can be attributed to strong electron delocalization through the aromatic ring due to the effect of the strong electron-withdrawing

groups NO₂ and CN in *para* positions, which remarkably diminish the electron density on the azomethine carbon bonded to carbon with bridge hydrogen (3a-H/3a'-H). The distinct doublets at the specified chemical shift positions may be considered as proof of the formation of only one cycloadduct from this reaction, namely the *meso* form.

These chemical shift values are plotted against Hammett sigma constants in Fig. 3.

The carbonyl carbons appeared at around 170–175 ppm and azomethine carbons around 145–155 ppm depending on the *p*-substituents in the 13 C NMR spectra of the title compounds.

	ĸ	о _{за-н} (ppin)
a	Н	5.30
b	Cl	5.30
c	Br	5.34
d	F	5.22
e	Me	5.29
f	CN	5.46
g	NO_2	5.47
h	OMe	5.20
i	SMe	5.22
j	CF ₃	5.40
k	OCOMe	5.25

Upon investigation of ultraviolet (UV) absorptions of compounds **11**, **12**, and **13** it was clearly found that electron-withdrawing groups (CF₃, CN, and NO₂) on the phenyl ring attached to the azomethine carbon atom cause λ_{max} values (Table 2) to shift to longer wavelengths (towards visible region), and electron-donating groups (Me, OMe, SMe) to shorter wavelengths (Figs. 4, 5, 6).

Fig. 3 Correlation of the chemical shifts of 3a-H versus Hammett σ_p constants of 11a–11k

In addition, a linear correlation between λ_{max} values and the Hammett substituent constants [61], σ_{p} , was obtained for compounds **11**, **12**, and **13** (Figs. 7, 8, 9). To the best of our knowledge, there are only two publications relating to correlation of UV absorption frequencies with Hammett substituent constants reported in the literature [62, 63].

Experimental

¹H and ¹³C NMR spectra were recorded on BRUKER and VARIAN spectrometers (300 and 400 MHz for proton and 75 and 100 MHz for carbon). IR spectra were recorded on a SHIMADZU FTIR-8400S instrument (KBr pellet). Matrix-assisted laser desorption/ionization (MALDI) mass spectra were run on a Bruker FTMS 4.7-T BioAPEX II instrument, and also high-resolution mass spectra of the compounds were measured on a Bruker FTMS 4.7-T BioAPEX II and AEIMS 902 or a VG 7070E mass spectrometer. Ultraviolet spectra were recorded in 1,2-dichloroethane on a Hitachi U-2900 spectrophotometer at room temperature. Elemental analyses were performed on a Eurovector EA 3000 instrument. Melting points were determined on a MELTEMP apparatus. TLC was done using precoated plates with fluorescent indicator (Merck 5735). Stain solutions of permanganate, *p*-anisaldehyde, and iodine were used for visualization of TLC spots.

Preparation of 5,5'-substituted bis(dihydropyrrolo [3,4-c]pyrazoles) 11–13, typical procedure

The corresponding hydrazonyl chloride **4** (0.5 mmol) and bismaleimide **8**, **9** or **10** (1 mmol) were dissolved in 20 cm³ dry acetonitrile. Et₃N (0.404 g, 4 mmol) was added dropwise to the mixture with stirring, and after complete addition the reaction mixture was stirred at room temperature for 2–4 h. Progress of the reaction was monitored by TLC. After evaporating CH₃CN, the reaction mixture was

elation
e

Table 2 UV absorption maxima (λ_{max}) and ε of compounds 11–13

Compound	Substituent	λ_{\max} (nm)	$\varepsilon/10^4$ (dm ³ mol ⁻¹ cm ⁻¹). ClCH ₂ CH ₂ Cl
11a	<i>р</i> -Н	350.0	3.36
11b	<i>p</i> -Cl	357.0	3.72
11c	<i>p</i> -Br	358.0	3.45
11d	<i>p</i> -F	348.5	3.00
11e	<i>p</i> -Me	349.0	3.77
11f	<i>p</i> -CN	378.5	3.65
11g	p-NO ₂	419.0	3.37
11h	<i>p</i> -OMe	349.5	3.23
11i	<i>p</i> -SMe	362.0	3.44
11j	<i>p</i> -CF ₃	364.5	2.93
11k	p-OCOMe	353.5	3.48
12a	<i>р</i> -Н	350.0	3.06
12b	<i>p</i> -Cl	357.5	3.35
12c	<i>p</i> -Br	358.0	3.44
12e	<i>p</i> -Me	349.0	3.40
12f	<i>p</i> -CN	383.0	3.49
12g	p-NO ₂	418.5	3.20
12h	<i>p</i> -OMe	349.0	3.24
12j	<i>p</i> -CF ₃	365.0	3.44
12k	p-OCOMe	353.0	3.42
13a	p-H	349.0	3.25
13b	<i>p</i> -Cl	357.0	3.12
13c	<i>p</i> -Br	358.5	3.11
13e	<i>p</i> -Me	348.5	3.45
13f	<i>p</i> -CN	378.5	4.13
13g	p-NO ₂	417.0	3.10
13h	<i>p</i> -OMe	349.0	3.22
13j	p-CF ₃	364.0	3.09
13k	p-OCOMe	353.0	3.01

poured into 50 cm³ water to afford the crude crystalline cycloadducts. The crystals were filtered and washed with water $(2 \times 50 \text{ cm}^3)$ and hexane $(2 \times 25 \text{ cm}^3)$ and dried thoroughly under vacuum to yield **11**, **12** or **13**.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -5,5'-[Methylenebis(4,1-

phenylene)]bis(3a,6a-dihydro-1,3-diphenylpyrrolo-[3,4-c]pyrazole-4,6(1H,5H)-dione) (**11a**, C₄₇H₃₄N₆O₄) Yellow crystalline solid; yield 190 mg (quant.); m.p.: 278– 280 °C; $R_f = 0.75$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,511, 1,494, 1,379, 1,193, 752, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.0 Hz, 4H), 7.58 (d, J = 8.0 Hz, 4H), 7.51–7.32 (m, 18H), 7.03 (t, J = 7.2 Hz, 2H), 5.30 (d, J = 11.0 Hz, 2H), 5.05 (d, J = 10.9 Hz, 2H), 4.01 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.7$ (C=O), 170.8 (C=O), 144.6 (C=N), 142.9, 141.2, 130.3, 129.7, 129.6, 129.5, 129.3, 128.6, 127.2, 126.4, 121.6, 114.5, 65.6 (-CH), 53.5 (-CH), 41.0 (-CH₂-) ppm; HRMS: calculated for $C_{47}H_{34}N_6O_4$ 746.2985, found [M + NH₄]⁺ 764.2991.

 $(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Methylenebis(4,1phenylene)]bis[3-(4-chlorophenyl)-3a,6a-dihydro-1phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (11b, C₄₇H₃₂Cl₂N₆O₄)

Yellow–grey crystalline solid; yield 190 mg (92%); m.p.: 194–196 °C; $R_{\rm f} = 0.70$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,512, 1,492, 1,379, 1,193, 752, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (d, J = 8.0 Hz, 4H), 7.62 (d, J = 8.0 Hz, 4H), 7.40 (t, J = 8.1 Hz, 8H), 7.22 (s, 8H), 7.03 (t, J = 7.0 Hz, 2H), 5.30 (d, J = 10.9 Hz, 2H), 4.97 (d, J = 10.9 Hz, 2H), 4.00 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.7$ (C=O), 170.9 (C=O), 144.8 (C=N), 142.0, 141.8, 135.5, 130.0, 129.7, 129.5, 129.4, 129.3, 128.7, 126.7, 121.8, 114.8, 65.8 (–CH), 53.0 (–CH), 41.0 (–CH₂) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 814 (100) [M]⁺, 815 (51) [M + H]⁺, 816 (70) [M + 2]⁺, 817 (30) [M + 3]⁺; HRMS: calculated for C₄₇H₃₂Cl₂N₆O₄ 814.1862, found 814.1852.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-[Methylenebis(4,1-phenylene)]bis[3-(4-bromophenyl)-3a,6a-dihydro-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione]

(**11c**, C₄₇H₃₂Br₂N₆O₄) Yellow crystalline solid: yield

Yellow crystalline solid; yield 230 mg (quant.); m.p.: 180– 182 °C; $R_f = 0.77$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,512, 1,498, 1,375, 1,192, 750, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, J = 8.0 Hz, 4H), 7.64 (d, J = 9.0 Hz, 4H), 7.58 (d, J = 9.0 Hz, 4H), 7.38 (t, J = 7.4 Hz, 4H), 7.25–7.19 (q, J = 8.0 Hz, 8H), 7.04 (t, J = 12.3 Hz, 2H), 5.34 (d, J = 11.1 Hz, 2H), 5.01 (d, J = 11.0 Hz, 2H), 4.02 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.4$ (C=O), 170.6 (C=O), 151.5 (C=N), 144.2, 141.8, 141.3, 131.8, 129.8, 129.4, 129.3, 128.6, 126.3, 121.8, 114.6, 77.2, 65.7 (–CH), 53.4 (–CH), 41.0 (–CH₂–) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 902 (50) [M]⁺, 904 (100) [M + 2]⁺, 906 (60) [M + 4]⁺; HRMS: calculated for C₄₇H₃₂Br₂N₆O₄ 902.0852, found 902.0849.

 $(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Methylenebis(4,1phenylene)]bis[3-(4-fluorophenyl)-3a,6a-dihydro-1phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (11d, C₄₇H₃₂F₂N₆O₄)

Orange crystalline solid; yield 210 mg (quant.); m.p.: 183– 185 °C; $R_{\rm f} = 0.77$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,059$ (arom. C–H), 1,724 (C=O), 1,597 (C=N), 1,512, 1,492, 1,381, 1,193, 839, 750, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.10$ –8.07 (q, J = 5.4, 2.3 Hz, 4H), 7.62 (d, J = 9.0 Hz, 4H), 7.37 (t, J = 7.5 Hz, 4H),

Fig. 5 UV-Vis spectra of compounds 12a–12k

 $(3aR^*,6aR^*,3a'S^*,6a'S^*)-5,5'-[Methylenebis(4,1-phenylene)]bis[3a,6a-dihydro-3-(4-methylphenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione]$ (11e, C₄₉H₃₈N₆O₄)

Yellow crystalline solid; yield 198 mg (quant.); m.p.: 180– 182 °C; $R_{\rm f} = 0.75$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,034$ (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,514, 1,498, 1,379, 1,184, 817, 752, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.1 Hz, 4H), 7.64 Fig. 6 UV-Vis spectra of

compounds 13a-13k

p-NO₂

440

420

Fig. 7 Correlation between Hammett $\sigma_{\rm p}$ constants and $\lambda_{\rm max}$ (nm) of 11a–11k

Fig. 8 Correlation between Hammett $\sigma_{\rm p}$ constants and $\lambda_{\rm max}$ (nm) of 12a–12k

Fig. 9 Correlation between Hammett σ_p constants and λ_{max} (nm) of 13a–13k

(d, J = 7.8 Hz, 4H), 7.37 (t, J = 7.4 Hz, 6H), 7.28–7.20 (m, 10H), 7.02 (t, J = 7.3 Hz, 2H), 5.29 (d, J = 11.0 Hz, 2H), 5.03 (d, J = 10.9 Hz, 2H), 4.02 (s, 2H), 2.42 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.8$ (C=O), 170.8 (C=O), 144.8 (C=N), 143.1, 141.2, 139.8, 129.7, 129.5, 129.3, 129.2, 127.5, 127.2, 126.4, 121.4, 114.5, 65.6 (–CH), 53.6 (–CH), 41.0 (–CH₂–), 21.5 (–CH₃) ppm; HRMS: calculated for C₄₉H₃₈N₆O₄ + NH₄⁺ 792.3298, found 792.3296.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)-4,4'-[Methylenebis](4,1-phenylene)(3a,4,6,6a-tetrahydro-4,6-dioxo-1-phenylpyrrolo-$ [3,4-c]pyrazole-5,3(1H)-diyl)]]bis[benzonitrile](11f, C₄₉H₃₂N₈O₄)

Bright-yellow crystalline solid; yield 203 mg (quant.); m.p.: 209–211 °C; $R_{\rm f} = 0.6$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,059$ (arom. C–H), 2,225 (C \equiv N), 1,720 (C=O), 1,597 (C=N), 1,512, 1,498, 1,381, 1,193, 842, 752, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.4 Hz, 4H), 7.73 (d, J = 8.5 Hz, 4H), 7.66 (d, J = 8.5 Hz, 4H), 7.40 (t, J = 7.3 Hz, 4H), 7.32–7.17 (m, 8H), 7.08 (t, J = 7.3 Hz, 2H), 5.46 (d, J = 11.2 Hz, 2H), 5.06 (d, J = 11.2 Hz, 2H), 4.04 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.2$ (C=O), 170.6 (C=O), 143.5 (C=N), 141.4, 140.7, 134.7, 132.3, 129.8, 129.4, 129.3, 127.3, 126.3, 122.4, 118.8, 114.7, 112.2 (C \equiv N), 65.7 (–CH), 53.1 (–CH), 41.0 (–CH₂–) ppm; HRMS: calculated for C₄₉H₃₂N₈O₄ + NH₄⁺ 814.2890, found 814.2894.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Methylenebis(4,1-phenylene)]bis[3a,6a-dihydro-3-(4-nitrophenyl)-1-phenylpyrrolo-[3,4-c]pyrazole-4,6(1H,5H)-dione] (**11g**, C₄₇H₃₂N₈O₈)

Dark-orange crystalline solid; yield 215 mg (quant.); m.p.: 208–210 °C; $R_{\rm f} = 0.5$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,041$ (arom. C–H), 1,720 (C=O), 1,595 (C=N), 1,546, 1,512, 1,500, 1,381, 1,193, 850, 750, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33-8.20$ (q, J = 9.0 Hz,

8H), 7.67 (d, J = 9.0 Hz, 4H), 7.41 (t, J = 7.5 Hz, 4H), 7.27–7.20 (m, 8H), 7.09 (t, J = 7.3 Hz, 2H), 5.47 (d, J =11.2 Hz, 2H), 5.08 (d, J = 11.2 Hz, 2H), 4.03 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.9$ (C=O), 170.5 (C=O), 147.7 (C=N), 143.3, 141.4, 140.2, 136.5, 129.8, 129.7, 129.4, 127.5, 126.3, 123.9, 122.6, 114.8, 65.7 (–CH), 53.0 (–CH), 45.7(–CH₂–) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 836 (100) [M]⁺, 837 (70) [M + H]⁺; HRMS: calculated for C₄₇H₃₂N₈O₈ 836.2343, found 836.2338.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-[Methylenebis(4,1-phenylene)]bis[3a,6a-dihydro-3-(4-methoxyphenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione]

$(11h, C_{49}H_{38}N_6O_6)$

Brown crystalline solid; yield 215 mg (quant.); m.p.: 169– 171 °C; $R_{\rm f} = 0.37$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,512, 1,498, 1,379, 1,253, 1,176, 835, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.8 Hz, 4H), 7.61 (d, J = 7.7 Hz, 4H), 7.36 (t, J = 7.4 Hz, 4H), 7.28–6.70 (m, 14H), 5.20 (d, J = 10.9 Hz, 2H), 4.93 (d, J = 10.9 Hz, 2H), 4.02 (s, 2H), 3.86 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.9$ (C=O), 170.9 (C=O), 160.8 (C=N), 145.0, 142.9, 141.2, 134.1, 129.7, 129.2, 128.9, 126.4, 123.0, 121.3, 114.4, 114.0, 65.7 (–CH), 55.4 (–O–CH₃), 53.7 (–CH), 41.0 (–CH₂–) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 806 (100) [M]⁺, 807 (55) [M + H]⁺; HRMS: calculated for C₄₉H₃₈N₆O₆ 806.2853, found 806.2848.

 $(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Methylenebis(4,1-phenylene)]bis[3a,6a-dihydro-3-[4-(methylthio)phenyl]-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (11i, C₄₉H₃₈N₆O₄S₂)

Brown crystalline solid; yield 224 mg (quant.); m.p.: 170–172 °C; $R_{\rm f} = 0.50$ (ethyl acetate–*n*-hexane 1:2); IR (KBr):

 \bar{v} = 3,036 (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,510, 1,492, 1,379, 1,188, 821, 750, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, J = 8.3 Hz, 4H), 7.62 (d, J = 8.1 Hz, 4H), 7.36 (t, J = 7.6 Hz, 4H), 7.30–7.10 (m, 12H), 7.03 (t, J = 7.2 Hz, 2H), 5.22 (d, J = 10.9 Hz, 2H), 4.91 (d, J = 10.9 Hz, 2H), 3.97 (s, 2H), 2.50 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 171.7 (C=O), 170.8 (C=O), 144.6 (C=N), 142.6, 141.2, 140.8, 129.7, 129.5, 129.2, 127.5, 126.9, 126.4, 125.9, 121.5, 114.5, 65.6 (–CH), 53.5 (–CH), 41.0 (–CH₂–), 15.3 (–S– CH₃) ppm; MALDI-MS (pos. mode, DCTB): *m/z* (%) = 838 (100) [M]⁺, 839 (56) [M + H]⁺; HRMS: calculated for C₄₉H₃₈N₆O₄S₂ 838.2396, found 838.2397.

$\begin{array}{l} (3aR^*, 6aR^*, 3a'S^*, 6a'S^*) - 5, 5' - [Methylenebis(4, 1-phenylene)] bis[3a, 6a-dihydro-1-phenyl-3-[4-(trifluoro-methyl)phenyl] pyrrolo[3, 4-c] pyrazole-4, 6(1H, 5H)-dione] \\ (\mathbf{11j}, C_{49}H_{32}F_6N_6O_4) \end{array}$

Bright-yellow crystalline solid; yield 223 mg (quant.); m.p.: 185–187 °C; $R_{\rm f} = 0.45$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,059$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,550, 1,517, 1,498, 1,383, 1,166, 1,124, 844, 752, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃ + DMSO-*d*₆): $\delta = 8.16$ (d, J = 8.1 Hz, 4H), 7.65–7.59 (dd, J = 8.3, 7.9 Hz, 8H), 7.33 (t, J = 7.5 Hz, 4H), 7.18 (dd, J = 8.6, 4.2 Hz, 8H), 6.99 (t, J = 7.3 Hz, 2H), 5.40 (d, J = 11.1 Hz, 2H), 5.06 (d, J = 11.1 Hz, 2H), 3.98 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃ + DMSO-*d*₆): $\delta = 176.8$ (C=O), 176.0 (C=O), 149.0 (C=N), 146.8, 146.0, 139.0, 134.6, 134.2, 134.0, 132.0, 131.5, 130.2, 129.8, 126.4, 119.5, 119.3, 71.0 (–CH), 58.5, (–CH), 50.8 (–CH₂–) ppm; HRMS: calculated for C₄₉H₃₂F₆N₆O₄ + NH₄⁺ 900.22733, found 900.2736.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)-4,4'-[Methylenebis](4,1-phenylene)(3a,4,6,6a-tetrahydro-4,6-dioxo-1-phenylpyrrolo-$ [3,4-c]pyrazole-5,3(1H)-diyl)]]bis[phenyl acetate](11k, C₅₁H₃₈N₆O₈)

Light-yellow crystalline solid; yield 203 mg (95%); m.p.: 190–192 °C; $R_{\rm f} = 0.75$ (ethyl acetate); IR (KBr): $\bar{\nu} = 3,061$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,510, 1,498, 1,371, 1,199, 1,166, 848, 752, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.10$ (d, J = 8.4 Hz, 4H), 7.62 (d, J = 7.9 Hz, 4H), 7.35 (t, J = 7.3 Hz, 4H), 7.23–7.10 (m, 12H), 7.05 (t, J = 7.0 Hz, 2H), 5.25 (d, J = 11.0 Hz, 2H), 4.90 (d, J = 10.9 Hz, 2H), 4.00 (s, 2H), 2.34 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.7$ (C=O), 170.8 (C=O), 169.3 (C=O), 151.5 (C=N), 144.5, 142.0, 141.3, 129.7, 129.5, 129.2, 128.4, 128.2, 126.4, 121.8, 121.6, 114.5, 65.8 (–CH), 53.5 (–CH), 41.0 (–CH₂–), 21.2 (–CH₃) ppm; HRMS: calculated for C₅₁H₃₈N₆O₈ + NH₄⁺ 880.3095, found 880.3094.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)-5,5'-[Oxybis(4,1-pheny-lene)]bis(3a,6a-dihydro-1,3-diphenylpyrrolo[3,4-c]-pyrazole-4,6(1H,5H)-dione)$ (**12a**, C₄₆H₃₂N₆O₅)

Yellow–green crystalline solid; yield 177 mg (95%); m.p.: 178–180 °C (dec.); $R_{\rm f} = 0.47$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,061$ (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,500, 1,383, 1,244, 1,193, 754, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, J = 7.9 Hz, 4H), 7.42 (d, J = 8.2 Hz, 4H), 7.30–7.05 (m, 14H), 6.88 (d, J = 8.0 Hz, 4H), 6.78 (t, J = 7.0 Hz, 2H), 5.22 (d, J = 10.8 Hz, 2H), 4.98 (d, J = 10.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.1$ (C=O), 172.1 (C=O), 156.7 (C=N), 145.0, 144.5, 131.0, 129.7, 129.5, 129.4, 128.9, 127.8, 127.5, 121.2, 119.6, 114.4, 66.3 (–CH), 54.5 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 748 (100) [M]⁺, 749 (50) [M + H]⁺; HRMS: calculated for C₄₆H₃₂N₆O₅ 748.2434, found 748.2430.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Oxybis(4,1-phenylene)]bis[3-(4-chlorophenyl)-3a,6a-dihydro-1phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (**12b**, C₄₆H₃₀Cl₂N₆O₅)

Olive-green crystalline solid; yield 206 mg (quant.); m.p.: 167–169 °C (dec.); $R_{\rm f} = 0.56$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,061$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,500, 1,381, 1,242, 1,193, 831, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, J = 8.1 Hz, 4H), 7.54 (t, J = 8.6 Hz, 8H), 7.35 (d, J = 7.9 Hz, 8H), 7.14 (d, J = 8.3 Hz, 4H), 6.96 (t, J = 7.0 Hz, 2H), 5.55 (d, J = 10.9 Hz, 2H), 5.36 (d, J = 10.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.0$ (C=O), 172.1 (C=O), 156.7 (C=N), 144.7, 143.4, 134.3, 129.9, 129.5, 129.4, 129.0, 127.8, 121.3, 119.6, 114.5, 66.4 (–CH), 54.4 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 816 (100) [M]⁺, 818 (70) [M + 2]⁺, 819 (40) [M + 3]⁺; HRMS: calculated for C₄₆H₃₀Cl₂N₆O₅ 816.1655, found 816.1649.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-[Oxybis(4,1-phenylene)]bis[3-(4-bromophenyl)-3a,6a-dihydro-1-phe-

nylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione](12c, C₄₆H₃₀Br₂N₆O₅)

Light-brown crystalline solid; yield 226 mg (quant.); m.p.: 174–176 °C (dec.); $R_{\rm f} = 0.63$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,045$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,500, 1,381, 1,244, 1,193, 829, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (d, J = 8.4 Hz, 4H), 7.68 (d, J = 8.4 Hz, 4H), 7.52 (d, J = 8.3 Hz, 4H), 7.31 (t, J = 8.1 Hz, 8H), 7.10 (d, J = 8.7 Hz, 4H), 6.92 (t, J = 7.3 Hz, 2H), 5.55 (d, J = 11.0 Hz, 2H), 5.35 (d, J = 10.9 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.1$ (C=O), 172.1 (C=O), 156.7 (C=N), 145.0,

143.5, 132.1, 130.5, 129.7, 129.5, 129.4, 127.8, 123.5, 121.5, 119.6, 114.5, 66.4 (–CH), 54.5 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 904 (50) [M]⁺, 906 (100) [M + 2]⁺, 907 (50) [M + 3]⁺, 908 (50) [M + 4]⁺; HRMS: calculated for C₄₆H₃₀Br₂N₆O₅ 904.0644, found 904.0635.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-[Oxybis(4,1-phenylene)]bis[3a,6a-dihydro-3-(4-methylphenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione]

 $({\bf 12e},\,C_{48}H_{36}N_6O_5)$

Bright-yellow powder; yield 188 mg (97%); m.p.: 173– 175 °C (dec.); $R_{\rm f} = 0.56$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,066$ (arom. C–H), 2,918 (aliph. C–H), 1,720 (C=O), 1,597 (C=N), 1,500, 1,381, 1,244, 1,194, 819, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, J = 7.8 Hz, 4H), 7.50 (d, J = 8.0 Hz, 4H), 7.40–7.20 (m, 12H), 7.14 (d, J = 8.5 Hz, 4H), 6.91 (t, J = 7.1 Hz, 2H), 5.50 (d, J = 10.8 Hz, 2H), 5.34 (d, J = 10.8 Hz, 2H), 2.42 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.2$ (C=O), 172.1 (C=O), 156.7 (C=N), 145.2, 144.6, 139.5, 129.5, 129.5, 129.4, 128.3, 127.9, 127.5, 121.0, 119.6, 114.4, 66.3 (–CH), 54.6 (–CH), 21.4 (–CH₃) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 776 (100) [M]⁺, 777 (55) [M + H]⁺; HRMS: calculated for C₄₈H₃₆N₆O₅ 776.2747, found 776.2746.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)-4,4'-[Oxybis[(4,1-pheny$ lene)(3a,4,6,6a-tetrahydro-4,6-dioxo-1-phenylpyrrolo-[3,4-c]pyrazole-5,3(1H)-diyl)]]bis[benzonitrile](12f, C₄₈H₃₀N₈O₅)

Bright-yellow crystalline solid; yield 190 mg (95%); m.p.: 288–290 °C (dec.); $R_{\rm f} = 0.25$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{v} = 3,057$ (arom. C–H), 2,225 (C \equiv N), 1,722 (C=O), 1,599 (C=N), 1,500, 1,383, 1,242, 1,193, 839, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (d, J =8.4 Hz, 4H), 7.61 (d, J = 8.3 Hz, 4H), 7.52 (d, J = 7.9 Hz, 4H), 7.40 (d, J = 12.8 Hz, 2H), 7.25 (t, J = 7.5 Hz, 2H), 7.20 (d, J = 8.8 Hz, 4H), 7.01 (d, J = 8.9 Hz, 4H), 6.90 (t, J = 7.1 Hz, 2H), 5.45 (d, J = 11.1 Hz, 2H), 5.10 (d, J = 11.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$ (C=O), 171.9 (C=O), 156.7 (C=N), 144.1, 142.4, 135.5, 132.6, 129.4, 129.4, 129.2, 127.8, 121.7, 119.5, 119.1, 114.7, 111.4 ($C \equiv N$), 66.4 (-CH), 53.9 (-CH) ppm; MALDI-MS (pos. mode, DCTB): m/z $(\%) = 798 (90) [M]^+, 799 (50) [M + H]^+; HRMS: calcu$ lated for C₄₈H₃₀N₈O₅ 798.2339, found 798.2334.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-[Oxybis(4,1-pheny-

lene)]bis[3a,6a-dihydro-3-(4-nitrophenyl)-1-phenylpyrrolo-[3,4-c]pyrazole-4,6(1H,5H)-dione] (**12g**, C₄₆H₃₀N₈O₉) Dark-orange crystalline solid; yield 209.5 mg (quant.); m.p.: 208–210 °C (dec.); $R_{\rm f} = 0.29$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{v} = 3,109,3,057$ (arom. C–H), 1,720 (C=O), 1,595 (C=N), 1,546, 1,498, 1,383, 1,340, 1,242, 1,193, 835, 750, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (d, J = 8.9 Hz, 4H), 8.22 (d, J = 8.9 Hz, 4H), 7.58 (d, J = 7.9 Hz, 4H), 7.40–7.30 (q, J = 7.50 Hz, 8H), 7.14 (d, J = 8.8 Hz, 4H), 7.00 (t, J = 7.2 Hz, 2H), 5.68 (d, J = 11.1 Hz, 2H), 5.42 (d, J = 11.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.7$ (C=O), 172.0 (C=O), 156.7 (C=N), 147.5, 143.9, 142.3, 137.5, 129.6, 129.5, 128.1, 127.8, 124.2, 121.9, 119.5, 114.8, 66.5 (–CH), 54.0 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 838 (100) [M]⁺, 839 (55) [M + H]⁺; HRMS: calculated for C₄₆H₃₀N₈O₉ 838.2136, found 838.2133.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Oxybis(4,1-phenylene)]bis[3a,6a-dihydro-3-(4-methoxyphenyl)-1phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (**12h**, C₄₈H₃₆N₆O₇)

Light-orange–brown crystalline solid; yield 202 mg (quant.); m.p.: 164–166 °C (dec.); $R_{\rm f} = 0.60$ (ethyl ace-tate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,720 (C=O), 1,597 (C=N), 1,498, 1,381, 1,247, 1,176, 833, 750, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.02$ (d, J = 8.7 Hz, 4H), 7.58 (t, J = 7.9 Hz, 4H), 7.30 (t, J = 7.9 Hz, 4H), 7.25–6.62 (m, 14H), 5.22 (d, J = 10.8 Hz, 2H), 4.96 (d, J = 10.8 Hz, 2H), 3.83 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.1$ (C=O), 171.1 (C=O), 161.0 (C=N), 156.9, 145.1, 143.1, 129.4, 129.0, 128.7, 128.2, 123.1, 121.6, 119.7, 114.6, 114.2, 65.8 (–CH), 55.6 (O–CH₃), 53.8 (–CH) ppm. Anal Calcd for C₄₈H₃₆N₆O₇. C, 71.28; H, 4.49; N, 10.39; found C, 70.70; H, 4.69; N, 10.43.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)$ -5,5'-[Oxybis(4,1-phenylene)]bis[3a,6a-dihydro-1-phenyl-3-[4-(trifluoromethyl)phenyl]pyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (**12j**, C₄₈H₃₀F₆N₆O₅)

Bright-yellow crystalline solid; yield 213 mg (96%); m.p.: 184–186 °C (dec.); $R_{\rm f} = 0.62$ (ethyl acetate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,059$ (arom. C–H), 1,724 (C=O), 1,599 (C=N), 1,500, 1,384, 1,244, 750, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.2 Hz, 4H), 7.69–7.62 (dd, J = 14.9, 8.4 Hz, 8H), 7.38 (t, J = 7.6 Hz, 4H), 7.27–7.25 (m, 4H), 7.09–7.02 (m, 6H), 5.40 (d, J = 11.1 Hz, 2H), 5.07 (d, J = 11.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.5$ (C=O), 170.8 (C=O), 157.0 (C=N), 144.0, 141.3, 133.8, 129.5, 128.1, 128.0, 127.4, 126.6, 125.8, 125.7, 122.4, 119.7, 114.8, 65.8 (–CH), 53.4 (–CH) ppm. Anal Calcd for C₄₈H₃₀F₆N₆O₅. C, 65.16; H, 3.42; N, 9.50; found C, 65.30; H, 3.73; N, 9.63.

$(3aR^*,6aR^*,3a'S^*,6a'S^*)-4,4'-[Oxybis[(4,1-pheny$ lene)(3a,4,6,6a-tetrahydro-4,6-dioxo-1-phenylpyrrolo-[3,4-c]pyrazole-5,3(1H)-diyl)]]bis[phenyl acetate](12k, C₅₀H₃₆N₆O₉)

Brown crystalline solid; yield 220 mg (quant.); m.p.: 190– 192 °C (dec.); $R_{\rm f} = 0.25$ (ethyl acetate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,066$ (arom. C–H), 1,720 (C=O), 1,599 (C=N), 1,500, 1,371, 1,197, 750, 690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.10$ (d, J = 8.7 Hz, 4H), 7.60 (d, J = 8.7 Hz, 4H), 7.38 (t, J = 7.3 Hz, 4H), 7.23–6.85 (m, 14H), 5.26 (d, J = 11.1 Hz, 2H), 4.95 (d, J = 10.8 Hz, 2H), 2.30 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.9$ (C=O), 171.0 (C=O), 169.5 (C=O), 151.8 (C=N), 144.6, 142.1, 129.5, 128.6, 128.3, 128.2, 126.7, 122.1, 121.9, 119.7, 114.7, 65.9 (–CH), 53.7 (–CH), 21.4 (COCH₃) ppm. Anal Calcd for C₅₀H₃₆N₆O₉. C, 69.44; H, 4.20; N, 9.72; found C, 69.39; H, 4.48; N, 9.77.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -5,5'-(1, 4-Phenylene)bis(3a, 6a-dihydro-1, 3-diphenylpyrrolo[3, 4-c]pyrazole-4,6(1H, 5H)-dione) (**13a**, C₄₀H₂₈N₆O₄)

Light-yellow powder; yield 158 mg (96%); m.p.: 354-356 °C (dec.); $R_f = 0.62$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{v} = 3,057$ (arom. C–H), 1,722 (C=O), 1,597 (C=N), 1,517, 1,498, 1,371, 1,290, 1,195, 758, 684 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.02$ (d, J = 7.4 Hz, 4H), 7.52 (d, J = 8.0 Hz, 6H), 7.49–7.38 (m, 8H), 7.33 (t, J = 7.7 Hz, 4H), 6.94 (t, J = 7.0 Hz, 2H), 5.52 (d, J = 10.9 Hz, 2H), 5.35 (d, J = 10.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 172.9$ (C=O), 171.9 (C=O), 144.9 (C=N), 144.2, 132.4, 130.9, 129.7, 129.4, 128.8, 128.1, 127.9, 127.5, 121.1, 114.4, 66.3 (-CH), 54.5 (-CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 656 (100) $[M]^+$, 657 (45) $[M + H]^+;$ HRMS: calculated for C40H28N6O4 656.2172, found 656.2162.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-(1,4-Phenylene)bis[3-(4-chlorophenyl)-3a,6a-dihydro-1-phenylpyrrolo-[3,4-c]pyrazole-4,6(1H,5H)-dione]

 $(13b, C_{40}H_{26}Cl_2N_6O_4)$

Light-green crystalline solid; yield 177 mg (98%); m.p.: 205–207 °C (dec.); $R_{\rm f} = 0.63$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,064$ (arom. C–H), 1,722 (C=O), 1,597 (C=N), 1,514, 1,492, 1,367, 1,292, 1,190, 831, 752, 692 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.04$ (d, J = 6.5 Hz, 4H), 7.84–7.13 (m, 16H), 6.97 (s, 2H), 5.57 (d, J = 10.1 Hz, 2H), 5.38 (d, J = 10.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.9$ (C=O), 171.9 (C=O), 144.7 (C=N), 143.3, 134.3, 132.5, 129.9, 129.5, 129.1, 129.0, 128.2, 126.4, 121.3, 114.4, 66.4 (–CH), 54.5 (–CH) ppm; MALDI-MS (pos. mode, DCTB): *m/z* (%) = 724 (100) [M]⁺, 726 (80) [M + 2]⁺, 727 (35)

 $[M + 3]^+$; HRMS: calculated for $C_{40}H_{26}Cl_2N_6O_4$ 724.1393, found 724.1388.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-(1,4-Phenylene)bis[3-(4-bromophenyl)-3a,6a-dihydro-1-phenylpyrrolo[3,4*c*]*pyrazole-4*,6(1H,5H)-*dione*] (**13c**, C₄₀H₂₆Br₂N₆O₄) Light-brown crystalline solid; yield 182 mg (90%); m.p.: 263–265 °C (dec.); $R_f = 0.50$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{v} = 3,043$ (arom. C–H), 1,722 (C=O), 1,599 (C=N), 1,512, 1,492, 1,365, 1,294, 1,176, 827, 750, 690 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.85$ (d, J = 8.5 Hz, 4H), 7.54–7.39 (m, 10H), 7.28–7.2.0 (m, 4H), 6.93 (t, J = 7.2 Hz, 4H), 5.26 (d, J = 11.1 Hz, 2H), 4.94 (d, J = 11.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO d_{6}): $\delta = 172.9$ (C=O), 171.9 (C=O), 144.3 (C=N), 142.0, 131.8, 131.5, 129.3, 129.2, 128.5, 126.8, 123.7, 121.8, 114.5, 65.8 (-CH), 53.5 (-CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 812 (50) [M]⁺, 814 (100) $[M + 2]^+$, 816 (50) $[M + 4]^+$; HRMS: calculated for C₄₀H₂₆Br₂N₆O₄ 812.0382, found 812.0379.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -5,5'-(1, 4-Phenylene)bis[3a, 6adihydro-3-(4-methylphenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (**13e**, C₄₂H₃₂N₆O₄)

Creamy-white powder; yield 165 mg (96%); m.p.: 338– 340 °C (dec.); $R_{\rm f} = 0.69$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,066$ (arom. C–H), 2941 (aliph. C–H), 1,724 (C=O), 1,595 (C=N), 1,514, 1,498, 1,371, 1,288, 1,195, 819, 754, 692 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.86$ (d, J = 8.1 Hz, 4H), 7.49 (d, J = 7.9 Hz, 4H), 7.42 (s, 4H), 7.24 (t, J = 7.5 Hz, 4H), 7.15 (d, J = 8.1 Hz, 4H), 6.88 (t, J = 7.2 Hz, 2H), 5.30 (d, J = 10.9 Hz, 2H), 5.06 (d, J = 10.9 Hz, 2H), 2.30 (s, 6H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 173.0$ (C=O), 171.9 (C=O), 145.1 (C=N), 144.5, 139.5, 132.5, 129.6, 129.5, 129.4, 128.2, 127.5, 121.0, 114.3, 66.3 (–CH), 54.6 (–CH), 21.4 (–CH₃) ppm; MALDI-MS (pos. mode, DCTB): *m/z* (%) = 684 (100) [M]⁺, 685 (50) [M + H]⁺; HRMS: calculated for C₄₂H₃₂N₆O₄ 684.2485, found 684.2478.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -4,4'-[(4,1-Pheny-

lene)bis(3a,4,6,6a-tetrahydro-4,6-dioxo-1-phenylpyrrolo-[3,4-c]pyrazole-5,3(1H)-diyl)]bis[benzonitrile]

 $({\bf 13f},\,C_{42}H_{26}N_8O_4)$

Yellow powder; yield 168 mg (95%); m.p.: 361–363 °C (dec.); $R_{\rm f} = 0.37$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,063$ (arom. C–H), 2,225 (C = N), 1,724 (C=O), 1,597 (C=N), 1,514, 1,498, 1,367, 1,255, 1,190, 837, 754, 690 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.02$ (d, J = 8.3 Hz, 4H), 7.77 (d, J = 8.2 Hz, 4H), 7.40 (d, J = 7.8 Hz, 4H), 7.23 (t, J = 7.4 Hz, 4H), 6.86 (t, J = 7.1 Hz, 2H), 5.51 (d, J = 11.4 Hz, 2H), 5.22 (d, J = 10.9 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.9$ (C=O), 171.9 (C=O), 144.7 (C=N), 143.3, 134.3, 132.5,

129.9, 129.5, 129.1, 129.0, 128.2, 126.4, 121.3, 114.4 (C \equiv N), 66.4 (–CH), 54.5 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 706 (100) [M]⁺, 707 (50) [M + H]⁺; HRMS: calculated for C₄₂H₂₆N₈O₄ 706.2077, found 706.2078.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -5,5'-(1, 4-Phenylene)bis[3a, 6adihydro-3-(4-nitrophenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4, 6(1H, 5H)-dione] (**13g**, C₄₀H₂₆N₈O₈)

Orange powder; yield 185 mg (99%); m.p.: 307–309 °C (dec.); $R_{\rm f} = 0.43$ (ethyl acetate–*n*-hexane 1:2); IR (KBr): $\bar{\nu} = 3,074$ (arom. C–H), 1,724 (C=O), 1,595 (C=N), 1,515, 1,500, 1,340, 1,292, 1,192, 850, 750, 690 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.29$ (d, J = 8.0 Hz, 4H), 8.21 (d, J = 8.3 Hz, 4H), 7.56 (d, J = 7.4 Hz, 4H), 7.44 (s, 4H), 7.35 (t, J = 7.6 Hz, 4H), 7.00 (t, J = 6.6 Hz, 2H), 5.70 (d, J = 10.9 Hz, 2H), 5.40 (d, J = 11.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 173.0$ (C=O), 171.8 (C=O), 147.8 (C=N), 144.3, 142.2, 137.4, 132.2, 129.6, 128.2, 128.0, 124.2, 122.0, 114.7, 66.3 (–CH), 53.9 (–CH) ppm; MALDI-MS (pos. mode, DCTB): m/z (%) = 746 (100) [M]⁺, 747 (50) [M + H]⁺; HRMS: calculated for C₄₀H₂₆N₈O₈ 746.1874, found 746.1869.

$(3aR^*, 6aR^*, 3a'S^*, 6a'S^*)$ -5,5'-(1, 4-Phenylene)bis[3a, 6adihydro-3-(4-methoxyphenyl)-1-phenylpyrrolo[3,4-c]pyrazole-4,6(1H,5H)-dione] (**13h**, C₄₂H₃₂N₆O₆)

Light-orange–brown crystalline solid; yield 165 mg (92%); m.p.: 173–175 °C (dec.); $R_{\rm f} = 0.25$ (ethyl acetate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,057$ (arom. C–H), 1,724 (C=O), 1,597 (C=N), 1,514, 1,498, 1,367, 1,176, 835, 752, 692 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.95$ (d, J = 8.2 Hz, 4H), 7.67–6.80 (m, 18H), 5.44 (d, J =11.5 Hz, 2H), 5.32 (d, J = 10.8 Hz, 2H), 3.79 (s, 6H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.6$ (C=O), 172.1 (C=O), 160.9 (C=N), 145.5, 144.6, 129.7, 129.4, 128.7, 128.5, 123.6, 121.0, 119.5, 114.8, 114.6, 114.4, 66.5 (–CH), 56.0 (OCH₃), 55.1 (–CH) ppm. Anal Calcd for C₄₂H₃₂N₆O₆. C, 70.38; H, 4.50; N, 11.73; found C, 70.11; H, 4.75; N, 11.49.

(3aR*,6aR*,3a'S*,6a'S*)-5,5'-(1,4-Phenylene)bis[3a,6adihydro-1-phenyl-3-[4-(trifluoromethyl)phenyl]pyrrolo-[3,4-c]pyrazole-4,6(1H,5H)-dione]

 $(\mathbf{13j}, \, C_{42}H_{26}F_6N_6O_4)$

Bright-yellow crystalline solid; yield 181 mg (91%); m.p.: 293–295 °C (dec.); $R_{\rm f} = 0.62$ (ethyl acetate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,063$ (arom. C–H), 1,724 (C=O), 1,599 (C=N), 1,514, 1,498, 1,327, 1,170, 840, 750, 690 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 8.20$ (d, J = 8.2 Hz, 4H), 7.84 (d, J = 8.2 Hz, 4H), 7.54 (d, J = 8.2 Hz, 4H), 7.45 (s, 4H), 7.37 (t, J = 8.2 Hz, 4H), 6.99 (t, J = 8.2 Hz, 2H), 5.63 (d, J = 11.4 Hz, 2H), 5.43 (d, J = 11.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-

 d_6): $\delta = 173.0$ (C=O), 172.2 (C=O), 144.5 (C=N), 143.1, 135.2, 132.7, 129.8, 128.5, 128.1, 126.7, 126.1, 121.8, 114.7, 66.6 (-CH), 54.5 (-CH) ppm. Anal Calcd for $C_{42}H_{26}F_6N_6O_4$. C, 63.64; H, 3.31; N, 10.60; found C, 63.17; H, 3.74; N, 10.67.

(3aR*,6aR*,3a'S*,6a'S*)-4,4'-[(4,1-Pheny-

lene)bis(3*a*,4,6,6*a*-*tetrahydro*-4,6-*dioxo*-1-*phenylpyrrolo*-[3,4-*c*]*pyrazole*-5,3(1*H*)-*diyl*)]*bis*[*phenyl acetate*] (**13k**, C₄₄H₃₂N₆O₈)

Light-brown crystalline solid; yield 195 mg (quant.); m.p.: 216–218 °C (dec.); $R_{\rm f} = 0.25$ (ethyl acetate–*n*-hexane 1:3); IR (KBr): $\bar{\nu} = 3,066$ (arom. C–H), 1,722 (C=O), 1,599 (C=N), 1,514, 1,498, 1,369, 1,199, 752, 692 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 8.05$ (d, J = 8.7 Hz, 4H), 7.52 (d, J = 8.4 Hz, 4H), 7.45 (s, 6H), 7.35 (t, J = 7.3 Hz, 4H), 7.26 (d, J = 8.7 Hz, 4H), 6.95 (t, J = 7.3 Hz, 2H), 5.54 (d, J = 11.1 Hz, 2H), 5.37 (d, J = 11.1 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 173.3$ (C=O), 172.3 (C=O), 151.8 (C=N), 145.1, 143.9, 129.7, 128.9, 128.5, 122.7, 121.4, 114.5, 66.4 (–CH), 54.7 (–CH), 21.5 (COCH₃) ppm. Anal Calcd for C₄₄H₃₂N₆O₈. C, 68.39; H, 4.17; N, 10.88; found C, 68.23; H, 4.61; N, 10.75.

Acknowledgments Abant İzzet Baysal University, Directorate of Research Projects Commission (BAP grant no. 2007.03.03.260) and TÜBİTAK (Turkish Scientific and Technological Research Council) (grant no. 106T645) are gratefully acknowledged for financial support. The authors also thank Professor T. A. Jenny (Department of Chemistry, University of Fribourg, Switzerland) and Professor D. W. Knight (School of Chemistry, Cardiff University, UK) for HRMS measurements.

References

- 1. Huisgen R (1963) Angew Chem Int Ed Engl 2:565
- 2. Huisgen R (1963) Angew Chem Int Ed Engl 2:633
- 3. Huisgen R (1976) J Org Chem 41:403
- Shimizu T, Hayashi Y, Miki M, Teramura K (1985) J Org Chem 50:904
- 5. Wolkoff P (1975) Can J Chem 53:1333
- 6. Agocs A, Benyei A, Somogyi L, Herczegh P (1998) Tetrahedron Asymmetr 9:3359
- Barluenga J, Fernandez-Mari F, Gonzalez R, Aguilar E, Revelli GA, Argimiro LV, Fananas FJ, Olano B (2000) Eur J Org Chem 1773
- 8. Molteni G, Ponti A (2008) Tetrahedron Asymmetr 19:1381
- 9. De Benassuti L, Molteni G, Mondini S, Ponti A (2007) Heterocycles 71:1371
- 10. De Benassuti L, Del Buttero P, Molteni G (2006) Tetrahedron Asymmetr 17:842
- 11. Garanti L, Molteni G (2004) Tetrahedron Asymmetr 15:1127
- Shawali AS, Abdallah MA, Mosselhi MAN, Elewa MS (2007) J Heterocycl Chem 44:285
- 13. Fergus S, Eustace SJ, Hegarty AF (2004) J Org Chem 69:4663
- 14. Molteni G (2005) Heterocycles 65:2513
- 15. Molteni G, Ponti A (2004) Tetrahedron Asymmetr 15:3711

- 16. Molteni G (2004) Heterocycles 63:1423
- Broggini G, Garanti L, Molteni G, Zecchi G (2000) Heterocycles 53:831
- Manyem S, Sibi MP, Lushington GH, Neuenswander B, Schoenen F, Aube J (2007) J Comb Chem 9:20
- Sibi MP, Stanley LM, Jasperse CP (2005) J Am Chem Soc 127:8276
- 20. Foti F, Grassi G, Liotta C, Risitano F (2007) Synlett 11:1730
- 21. Song L-P, Zhu S-Z (2003) J Fluorine Chem 124:211
- 22. Molteni G (2004) Tetrahedron Asymmetr 15:1077
- 23. Ferwanah ARS, Awadallah AM (2005) Molecules 10:492
- Abunada NM, Hassaneen HM, Kandile NG, Miqdad OA (2008) Molecules 13:1011
- 25. Ead HA, Hassaneen HM, Abdallah MA, Mousa HAH (1991) Arch Pharm 324:35
- 26. Bertrand G, Wentrup C (1994) Angew Chem Int Ed Engl 33:527
- 27. Huisgen R, Knupfer H, Sustmann R, Wallbillich G, Weberndorfer V (1967) Chem Ber 100:1580
- Clovis JS, Eckell A, Huisgen R, Sustmann R, Wallbillich G, Weberndorfer V (1967) Chem Ber 100:1593
- 29. Huisgen R, Sustmann R, Wallbillich G (1967) Chem Ber 100:1786
- 30. Fukui K (1971) Acc Chem Res 4:57
- 31. Sustmann R (1974) Pure Appl Chem 40:569
- Houk KN, Sims J, Duke RE, Strozier RW, George JK (1973) J Am Chem Soc 95:7287
- Houk KN, Sims J, Watts CR, Lukus LJ (1973) J Am Chem Soc 95:7301
- 34. Bastide J, El-Ghandour N, Henrirou O (1973) Bull Chim Fr 2290
- 35. Bastide J, Henri-Roussau O (1973) Bull Chim Fr 2294
- 36. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187
- Houk KN, Yamaguchi K (1984) In: Padwa A (ed) 1,3-Dipolar cycloaddition chemistry. Wiley, New York, p 439
- Mawhinney RC, Muchall HM, Peslherbe GH (2005) Can J Chem 83:1615
- 39. Ponti A, Molteni G (2001) J Org Chem 66:5252
- Chi JH, Shin GJ, Kim YS, Jung JC (2007) J Appl Polym Sci 106:3823

- Varma IK, Choudhary V, Gaur B, Lochab B, Oberoi S, Chauhan R (2006) J Appl Polym Sci 101:779
- Kriegel RM, Saliba KL, Jones G, Schiraldi DA, Collard DM (2005) Macromol Chem Phys 206:1479
- 43. Grigoras M, Colotin G (2001) Polym Int 50:1375
- 44. Gousse C, Gandini A (1999) Polym Int 48:723
- 45. Pindur U, Gonzalez E, Mehrabani F (1997) J Chem Soc Perkin Trans 1:1861
- Kopka ML, Larsen TA (1992) In: Probst CL, Perun TJ (eds) Nucleic acid targeted drug design. Marcel Dekker, New York, pp 303–374
- 47. Neidle S, Pearl LH, Skelly JV (1987) Biochem J 243:1
- 48. Pindur U, Fischer G (1996) Curr Med Chem 2:379
- 49. Eitel M, Pindur U (1990) J Org Chem 55:5368
- 50. Paulvannan K, Chen T, Hale R (2000) Tetrahedron 56:8071
- 51. Garanti L, Zecchi G (1977) J Chem Soc Perkin Trans 1:2092
- Reinov MV, Yurovskaya MA, Davydov DV, Streletskii AV (2004) Chem Heterocycl Compd 40:188
- Grubert L, Galley G, Patzel M (1996) Tetrahedron Asymmetr 7:1137
- 54. Huisgen R, Seidel M, Wallbillich G, Knupfer H (1962) Tetrahedron 17:3
- 55. Corey EJ, Kim CU (1972) J Am Chem Soc 94:7586
- 56. Corey EJ, Kim CU, Takeda M (1972) Tetrahedron Lett 4339
- Patel HV, Vyas KA, Pandey SP, Fernandes PS (1996) Tetrahedron 52:661
- 58. Wang HY, Wei J, Jiang XS, Yin J (2006) J Polym Int 55:930
- Oobuchi S, Kobayashi T, Murai N, Matsuno H (1988) Jpn Kokai Tokkyo Koho JP 86-209572 19860908; (1988) Chem Abstr 109:111071
- 60. Noguchi M, Matsumoto S, Shirai M, Yamamoto H (2003) Tetrahedron 59:4123
- 61. Hansch C, Leo A, Taft RW (1991) Chem Rev 2:165
- Krstic VV, Uscumlic GS, Muscatirovic MD (1988) J Mol Struct 174:247
- Uscumlic GS, Krstic VV, Muscatirovic MD (1988) J Mol Struct 174:251